Abstract
Clustered (multi-core) magnetic fluids provoke a considerable interest of researchers and practitioners, because they are very promising for various technical and biomedical applications. These fluids contain clusters (clustered particles), which, in turn, consist of ferromagnetic nanoparticles retained together by a polymer shell. The typical size of a cluster varies from a few tens to several hundreds of nanometers, while the sizes of individual single-domain ferroparticles of which it is composed vary from 5 to 12 nm. The rheological phenomena in such fluids (strong magnetorheological effect and slow viscoelastic relaxation) are predetermined by the association of the clustered particles under the action of an external magnetic field into heterogeneous structures and aggregates and the dynamics and disruption of these aggregates in macroscopic deformational flows. In this work, we propose a theoretical model for viscoelastic effects in clustered magnetic fluids. The model is based on the idea of aggregating composite particles into linear chain-like aggregates. In the order of magnitude, the theoretical results agree with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.