Abstract

Dynamic mechanical analysis, DMA, is an adequate technique for characterizing the mechanical features of biomaterials, as one can use test conditions that can more closely simulate the physiological environments in which they are going to be applied. In this work it was possible to perform different tests on chitosan membranes using low/moderate hydration levels, as well in completely wet conditions. In the first case the data obtained at different relative humidity environments were rationalized under a time-humidity superposition principle, where a master curve for the storage modulus could be obtained along a wide range of frequencies. The temperature dependence of the shift factors exhibited a curvature opposite to that expected by the WLF equation, and is consistent with relaxation dynamics behavior below the glass transition. Temperature scans above room temperature in both dry and wet conditions did not reveal strong variations in the viscoelastic properties. It was possible to follow in real time the water uptake in an initially-dry membrane. During the initial strong and fast decrease of the storage modulus the loss factor exhibited a peak that should correspond to the occurrence of the glass transition resulting from the plasticization effect of water. Upon equilibration the loss factor reached similar values as for the dry material (tandelta approximately equal to 0.5). The viscoelastic characterization reported in this work for chitosan may be useful in the use of such material for a variety of biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.