Abstract

The industrial relevant nonlinear viscoelastic properties of aqueous carboxymethyl hydroxypropyl guar gum (CMHPG) and non-ionic hydroxypropyl guar gum (HPG) solutions between semi-dilute and concentrated solution state were investigated by large amplitude oscillatory shear flow (LAOS). Aqueous CMHPG and HPG solutions enter the nonlinear flow regime at deformations γ0>100%. The nonlinear stress waveforms were analyzed by FT-rheology and orthogonal stress decomposition along the MITlaos framework. A rheological fingerprint is generated (Pipkin space) showing that the guar gum derivative solutions undergo a shear-thinning at high strains, which is preceded by a thickening above a minimum strain rate at intermediate strains. The influence and breakup of superstructures/aggregates gives a “rheological fingerprint”, a function of the applied deformation and time scale (Pipkin space). A characteristic process time was found that scales exponentially with the overlap parameter with an exponent of 4/2, and is proposed to represent the relaxation process of the superstructure in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call