Abstract

The noninvasive imaging technique of magnetic resonance elastography (MRE) was used to estimate the power law behavior of the viscoelastic properties of the human brain in vivo. The mechanical properties for four volunteers are investigated using shear waves induced over a frequency range of 10–50Hz to produce a displacement field measured by magnetic resonance motion-encoding gradients. The average storage modulus (μR) reconstructed with non-linear inversion (NLI) increased from approximately 0.95 to 2.58kPa over the 10–50Hz span; the average loss modulus (μI) also increased from 0.29 to 1.25kPa over the range. These increases were modeled by independent power law (PL) relations for μR and μI returning whole brain, group mean exponent values of 0.88 and 1.07 respectively. Investigation of these exponents also showed distinctly different behavior in the region of the cerebral falx compared to other brain structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call