Abstract

We investigate the evaporation-driven pattern formation in drying drops containing mixtures of polystyrene and soft microgel particles. The well-known coffee-rings that form when drops containing polystyrene particles are dried can be completely undone in the presence of a small quantity of soft colloids. The addition of soft colloids facilitates the adsorption of polystyrene particles to the water-vapor interface leading to a steep increase in their concentration and also imparts viscoelasticity to the interface. Time-resolved video microscopy is used to conclusively show the formation of a gel-like particle-laden interface. The mean square displacement of the polystyrene particles adsorbed to the interface confirms their immobile nature at the interface. This viscoelastic interface almost prevents the bulk flow-assisted migration of polystyrene particles toward the drop edge, leading to the suppression of coffee-ring effect and the formation of uniform particulate deposits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.