Abstract

First- (monomers), second- (pre-gelated), and third- (in situ gelating after injection) generation hydrogels were previously introduced to replace the vitreous body after vitrectomy surgery. In this study, we evaluated the surgical, optical, and viscoelastic properties of vitreous body replacement hydrogels before and after an accelerated aging protocol previously applied to intraocular implants. Measurements of injection force, removal speed using a clinically established vitrectomy setup, as well as evaluation of forward light scattering and viscoelastic properties before and after an accelerated aging protocol were conducted. Results were compared to porcine and human vitreous bodies, as well as currently clinically applied lighter- and heavier-than-water silicone oils. Removal speed of all tested hydrogels is substantially lower than the removal speed of porcine vitreous body (0.2 g/min vs. 2.7 g/min for the best performing hydrogel and porcine vitreous body, respectively). Forward light scattering in second-generation vitreous body replacement hydrogels was higher after the aging process than the straylight of the average 70-year-old vitreous body (9.4 vs. 5.5 deg2/sr, respectively). The viscoelastic properties of all hydrogels did not change in a clinically meaningful manner; however, trends toward greater stiffness and greater elasticity after aging were apparent. This study demonstrates surgical weaknesses of the hydrogels that need to be addressed before clinical use, especially low removal speed. Pre-linked hydrogels (second-generation) showed inferior performance regarding surgical properties compared to in situ gelating hydrogels (third-generation). This study highlights possible pitfalls regarding surgical and optical properties when applying vitreous replacement hydrogels clinically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.