Abstract

In this paper, viscoelastic multi-resonator mechanism for broadening low-frequency band-gaps of acoustic metamaterials is investigated. Firstly, the metamaterial unit consists of dual-mass and dual-viscoelasticity is proposed which can generate multiple resonances to form multiple band-gaps, and further the broadened band-gaps are realized by modulating the effect of the viscoelasticity. Secondly, for the dual-viscoelasticity, the band-gaps and transmission spectrum under the cases of with the consistent and inconsistent viscoelasticity are calculated. Comparing with the consistent case, by adjusting the viscoelasticity in the inconsistent case, the storage modulus changes the fastest and obtains a smaller and a larger elastic modulus at the corresponding starting frequency and ending frequency of the band-gap, in which the band-gap can be broadened and shifted to the low frequency since the resonant frequency is determined by the elastic modulus, and for the loss modulus, it has little effects on the width of the band-gap, but has great influence on the transmission coefficient. Thirdly, by adjusting the inconsistent viscoelastic parameters based on the above rules, the band width is increased by 1.7 times (1.3 times for the absolute band width) than the consistent structure and the band-gap is shifted to the low frequency by 31% (about 345 Hz). The viscoelastic multi-resonator mechanism can be used to practical applications of viscoelastic metamaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.