Abstract

A viscoelastic model of finitely deforming rubber is proposed and its nonlinear finite element approximation and numerical simulation are carried out. This viscoelastic model based on continuum mechanics is an extended model of Johnson and Quigley’s one-dimensional model. In the extended model, the kinematic configurations and measures based on continuum mechanics are rigorously defined and by using these kinematic measures, constitutive relations are introduced. The obtained highly nonlinear equations are approximated by the nonlinear finite element method, where a mixture of the total and updated Lagrangian descriptions is used. To verify the theory and the computer code, uniaxial stretch tests are simulated for various stretch rates and compared with actual experiments. As a practical example, an axisymmetric rubber plate under various time-dependent pressure loading conditions is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call