Abstract

Systemic hyperfibrinolysis is a lethal phenotype of trauma-induced coagulopathy. Its pathogenesis is poorly understood. Recent studies have support a central role of platelets in hemostasis and in fibrinolysis regulation, implying that platelet impairment is integral to the development of postinjury systemic hyperfibrinolysis. The objective of this study was to identify if platelet function is associated with blood clot sensitivity to fibrinolysis. We hypothesize that platelet impairment of the ADP pathway correlates with fibrinolysis sensitivity in trauma patients. A prospective observational study of patients meeting the criteria for the highest level of activation at an urban trauma center was performed. Viscoelastic parameters associated with platelet function (maximum amplitude [MA]) were measured with native thrombelastography (TEG), and TEG platelet mapping of the ADP pathway (ADP-MA). The contribution of fibrinogen to clotting was measured with TEG (angle) and the TEG functional fibrinogen (FF) assay (FF-MA). Another TEG assay containing tissue-type plasminogen activator (t-PA) (75 ng mL(-1) ) was used to assess clot sensitivity to an exogenous fibrinolytic stimulus by use of the TEG lysis at 30 min (LY30) variable. Multivariate linear regression was used to identify which TEG variable correlated with t-PA-LY30 (quantification of fibrinolysis sensitivity). Fifty-eight trauma patients were included in the analysis, with a median injury severity score of 17 and a base deficit of 6 mEq L(-1) . TEG parameters that significantly predicted t-PA-LY30 were related to platelet function (ADP-MA, P = 0.001; MA, P < 0.001) but not to fibrinogen (FF-MA, P = 0.773; angle, P = 0.083). Clinical predictors of platelet ADP impairment included calcium level (P = 0.001), base deficit (P = 0.001), and injury severity (P = 0.001). Platelet impairment of the ADP pathway is associated with increased sensitivity to t-PA. ADP pathway inhibition in platelets may be an early step in the pathogenesis of systemic hyperfibrinolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call