Abstract

Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the complex structural behavior of the involved packaging materials. A common simplification used in recent years is to model the polymer materials (i.e., encapsulant and backsheet) as linear elastic, which will lead to inaccurate results. Therefore, in this work, we present a thorough characterization of the time- and temperature-dependent mechanical response of predominant PV module encapsulant and backsheet materials. Based on this material characterization, we developed and experimentally validated generalized Maxwell models to describe each material's viscoelastic response. In addition, we included measurements of the coefficient of thermal expansion and presented all material models in such a fashion for direct input into commercial finite-element method modeling software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.