Abstract

The velocity and friction properties of laminar pipe flow of a viscoelastic solution are bounded by the corresponding values for two Newtonian fluids, namely, the solvent and a fluid with a viscosity identical to the total viscosity of the solution. The lower friction factor for the flow of the solution when compared to the latter is tracked to an increased strain rate needed to enhance viscous dissipation. Finally, we show analytically that the effective viscosity varies similarly to the radial diagonal component of the conformation tensor as observed numerically in turbulent flows and give a lucid interpretation of shear-thinning through a sequence of underlying constitutive physical phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call