Abstract

A computational approach that is based on interface finite elements with eMbedded Profiles for Joint Roughness (MPJR) is exploited in order to study the viscoelastic contact problems with any complex shape of the indenting profiles. The MPJR finite elements, previously developed for partial slip contact problems, are herein further generalized in order to deal with finite sliding displacements. The approach is applied to a case study concerning a periodic contact problem between a sinusoidal profile and a viscoelastic layer of finite thickness. In particular, the effect of using three different rheological models that are based on Prony series (with one, two, or three arms) to approximate the viscoelastic behaviour of a real polymer is investigated. The method allows for predicting the whole transient regime during the normal contact problem and the subsequent sliding scenario from full stick to full slip, and then up to gross sliding. The effects of the viscoelastic model approximation and of the sliding velocities are carefully investigated. The proposed approach aims at tackling a class of problems that are difficult to address with other methods, which include the possibility of analysing indenters of generic profile, the capability of simulating partial slip and gross slip due to finite slidings, and, finally, the possibility of simultaneously investigating dissipative phenomena, like viscoelastic dissipation and energy losses due to interface friction.

Highlights

  • A recently developed finite element procedure is extended and applied to the analysis of the transient and steady state sliding of a rigid indenter over a deformable material

  • We propose an extension of the variational approach that is based on the interface finite element with eMbedded Profile for Joint Roughness (MPJR) recently proposed in [6,7] for frictionless normal contact problems, and further generalized in [8] in order to simulate frictional partial slip scenarios, to accommodate finite interface sliding displacements

  • In order to investigate the effect of different viscoelastic models along with frictional effects, the contact problem involving a rigid indenter that is characterised by a harmonic profile acting over a layer made of a linear viscoelastic material is addressed

Read more

Summary

Introduction

A recently developed finite element procedure is extended and applied to the analysis of the transient and steady state sliding of a rigid indenter over a deformable material. In accordance with the requirements of current industrial applications, which demand increasingly complex contacting topologies, often down to the micro-scale, together with the analysis of concurrent interface phenomena, like friction and wear, it is shown that the present approach is capable of dealing with arbitrarily complex surfaces and, thanks to the flexibility of the finite element method, to account for any kind of material law. For Ethylene Vynil Acetate (EVA) used as an encapsulating material for photovoltaics, a power-law decay of the Young’s modulus with time has been reported [1,2], which can be well-modelled by a fractional viscoelastic model [3,4,5] as a limit of a Prony series representation with several arms.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call