Abstract
The mechanical behaviour of laminated glass is strongly affected by the polymeric interlayer placed between glass layers. In general, this interlayer is a viscoelastic material, and therefore it may experience creep and stress relaxation when subjected for an extended period to a constant stress or strain respectively. In this study, seven different commercial interlayer materials (EVALAM, EVASAFE, PVB BG-R20, Saflex DG-41, PVB ES, SentryGlas, and TPU) were evaluated with relaxation tests at different temperatures, in order to build the relaxation master curves through the time-temperature superposition principle. A generalized Maxwell model was chosen to describe the viscoelastic behaviour of the tested materials. This paper includes the coefficients of the Prony series that fit better the experimental results. This paper has two main goals. First, to present the Prony coefficients (ei and τi), which can then be used to create numerical models that take into consideration the time and temperature-dependant behaviour of the interlayer. Second, to provide the two components of the complex modulus (E*(ω)) of each material, the storage modulus (E’(ω)) and the loss modulus (E’’(ω)), which can be obtained from the relaxation modulus (E(t)) by using analytical interconversions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.