Abstract

AbstractA series of poly(butyl methacrylate)s (PBMAs) with various molar masses (33 000–270 000 g mol−1), which were densely grafted on fumed silica nanoparticles (PBMA–SiO2), were synthesized by surface‐initiated atom transfer radical polymerization. The dynamic viscoelastic behavior of PBMA–SiO2 was systematically investigated in the solid and molten states with oscillatory strains, and compared to that of a conventional nanocomposite (PBMA/SiO2). The storage moduli of PBMA–SiO2 and PBMA/SiO2 are equivalent in the solid state, whereas the storage modulus of PBMA–SiO2 is lower than that of PBMA/SiO2 in the molten state, especially at high silica loading. This is because the formation of a network structure composed of the silica nanoparticles in PBMA–SiO2 is strongly suppressed by the polymer brushes on the particles. In contrast, even at low silica loading, the PBMA–SiO2 system exhibits a gel‐like behavior resulting from a steric repulsion between the composite particles, because all of the tethered polymers behave as bound polymers. Copyright © 2011 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.