Abstract

The influence of the cross-linking degree on the dynamics of the segmental motions close to the glass transition of poly(methyl methacrylate), PMMA, networks was investigated by three different mechanical spectroscopy techniques: thermally stimulated recovery (TSR), dynamic mechanical analysis (DMA), and creep. The application of the time−temperature superposition principle to isothermal DMA and creep results permitted to successfully construct master curves for PMMA networks with distinct cross-linking degrees. The former results were fitted to the KWW equation. The obtained variation of βKWW for the distinct networks indicated that the relaxation curves tend to broaden as the cross-linking degree increases. TSR results clearly revealed a significant shift of the α-relaxation to longer times and a broader relaxation as the cross-linking degree increases, what was also observed by DMA and creep. A change from a Vogel to an Arrhenius behavior was detected by the three techniques with the decrease of temperature below T g. The temperature dependence of the apparent activation energies (E a) was calculated from DMA, creep, and TSR experiments; above T g a good agreement was seen between the E a values for all the techniques. Furthermore, the effect of the cross-linking degree on the fragility of PMMA networks was evaluated. For these materials an increase of fragility with increasing cross-linking degree was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.