Abstract

A viscoelastic and geometrically nonlinear finite element analysis is performed to investigate the stress relaxation and deflection of a laminated cylindrical shell under thermal loading. Incremental viscoelastic constitutive equations are derived to predict the stress relaxation. The finite element program is developed using a 3-D degenerated shell element, the first order shear deformation theory and the updated Lagrangian formulation. The viscoelastic and geometrically nonlinear analysis is executed for laminated shells with cross-ply and angle-ply stacking sequences, and its results are compared with those obtained from geometrically linear and viscoelastic analyses. The numerical results show that viscoelasticity and geometrical nonlinearity affect on the deflections and stresses of laminated cylindrical shells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call