Abstract

Anelastic properties of reservoir rocks are important and sensitive indicators of fluid saturation and viscosity changes due (for instance) to steam injection. The description of seismic waves propagating through viscoelastic continua is quite complex, involving a range of unique homogeneous and inhomogeneous modes. This is true even in the relatively simple theoretical environment of amplitude variation with offset (AVO) analysis. For instance, a complete treatment of the problem of linearizing the solutions of the low-loss viscoelastic Zoeppritz equations to obtain an extended Aki-Richards equations (one that is in accord with the appropriate complex Snell’s law) is lacking in the literature. Also missing is a clear analytical path allowing such forms to be reconciled with more general volume scattering pictures of viscoelastic seismic wave propagation. Our analysis, which provides these two missing elements, leads to approximate reflection and transmission coefficients for the P- and type-I S-waves. These involve additional, complex terms alongside those of the standard isotropic-elastic Aki-Richards equations. The extra terms were shown to have a significant influence on reflection strengths, particularly when the degree of inhomogeneity was high. The particular AVO forms we evaluated were finally shown to be special cases of potentials for volume scattering from viscoelastic inclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.