Abstract

The lattice Boltzmann method (LBM), widely used in computational fluid mechanics, is introduced as a novel mesoscopic numerical scheme for viscoacoustic wavefield simulation. Through mathematical derivation, a mapping model between the relaxation time of LBM and the quality factor based on the Kelvin-Voigt model is established, which provides a theoretical background for the comparison of the viscoacoustic wavefields obtained, respectively, by LBM and finite-difference method (FDM) formulated on the traditional wave equation. By defining the transmission and reflection coefficients and adopting a Newton interpolation algorithm to modify the streaming process of the LBM, we have extended the conventional LBM to simulate the wavefields in complex media with acceptable accuracy. A 2D homogeneous model, two 2D layered models, and the modified Marmousi model are tested in the numerical simulation experiments. The simulation results of LBM are comparable to those of FDM, and the relative errors are all within a reasonable range, which can verify the effectiveness of the forward modeling kernel. The modified LBM offers a new numerical scheme in seismology to simulate viscoacoustic wave propagation in complex media and even in porous media considering its flexible boundary condition and high discrete characteristic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.