Abstract

In this paper we present a holistic framework for full waveform inversion (FWI) in the visco-acoustic regime. FWI entails the reconstruction of material parameters (such as density and sound speed) from measurements of reflected wave fields (seismograms). We derive a discontinuous Galerkin (DG) solver for the visco-acoustic wave equation and incorporate it into an inverse solver. For the DG discretization we provide a block diagonal preconditioner for the efficient computation of the time steps by GMRES which yields a convergence estimate in space and time. Numerical tests illustrate these results. Furthermore, we set up an inverse solver of well established Newton-CG type, and we express the required Frechet derivative and its adjoint in the DG setting. Reconstructions from simulated cross-well seismograms highlight the challenges of FWI and demonstrate the performance of the scheme. Some of the inversion experiments use seismograms generated by an independent FDTD forward solver to avoid an inverse crime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.