Abstract

Nondestructive methods are of utmost importance for honey characterization. This study investigates the potential application of VIS-NIR hyperspectral imaging for detection of honey flower origin using machine learning techniques. Hyperspectral images of 52 honey samples were taken in transmittance mode in the visible/near infrared (VIS-NIR) range (400–1000nm). Three different machine learning algorithms were implemented to predict honey floral origin using honey spectral images. These methods, included radial basis function (RBF) network, support vector machine (SVM), and random forest (RF). Principal component analysis (PCA) was also exploited for dimensionality reduction. According to the obtained results, the best classifier (RBF) achieved a precision of 94% in a fivefold cross validation experiment using only the first two PCs. Mapping of the classifier results to the test set images showed 90% accuracy for honey images. Three types of honey including buckwheat, rapeseed and heather were classified with 100% accuracy. The proposed approach has great potential for honey floral origin detection. As some other honey properties can also be predicted using image features, in addition to floral origin detection, this method may be applied to predict other honey characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.