Abstract

The genetic requirements for inducing virus-specific T-cell proliferation were investigated by taking spleen cells from animals primed with vaccinia virus in vivo, then culturing the cells in vitro with vaccinia virus-infected syngeneic peritoneal macrophages, and finally restimulating these cells a second time in vitro with vaccinia virus-infected macrophages from several strains of mice. Under these conditions, T cells proliferated in the tertiary response to virus-specific stimulation, whereas background proliferation caused by allogeneic differences between stimulator and responder cells was minimal. Compatibility between T cells and infected stimulator cells at the K or I regions alone or at I- A or I- A + I- B regions of the major histocompatibility complex (MHC) produced strong proliferative responses, whereas compatibility at D alone often resulted in somewhat weaker responses. However, these responses were rarely as great as in combinations of completely syngeneic stimulator and responder cells. Homology between responding and virus-infected stimulating cells in more than one of the H-2 K, D, or I regions resulted in an additive, but not potentiating, effect. Genes coded outside the H-2 region did not seem to play a role in this system. In some rare cases, a weak response occurred across allogeneic barriers, but in general, virus-specific T-cell proliferation was strongly H-2 restricted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.