Abstract

Human parainfluenza viruses types 1, 2 and 3 (HPF 1, 2 and 3) are important pathogens in children. While these viruses share common structures and replication strategies, they target different parts of the respiratory tract; the most common outcomes of infection with HPF3 are bronchiolitis and pneumonia, while HPF 1 and 2 are associated with croup. While the HPF3 fusion protein (F) is critical for membrane fusion, our previous work revealed that the receptor binding hemagglutinin–neuraminidase (HN) is also essential to the fusion process; interaction between HN and its sialic acid-containing receptor on cell surfaces is required for HPF3 mediated cell fusion. Using our understanding of HPF3 HN's functions in the cell-binding and viral entry process, we are investigating the ways in which these processes differ in HPF 1 and 2, in part by manipulating receptor availability. Three experimental treatments were used to compare the HN–receptor interaction of HPF 1, 2 and 3: infection at high multiplicity of infection (m.o.i.); bacterial neuraminidase treatment of cells infected at low m.o.i.; and viral neuraminidase treatment of cells infected at low m.o.i. (using Newcastle disease virus [NDV] neuraminidase or UV irradiated HPF3 as sources of neuraminidase). In cells infected with HPF3, we have shown that infection with high m.o.i. blocks fusion, by removing sialic acid receptors for the viral HN. However, in cells infected with HPF 1 and 2, infection with high m.o.i. did not block fusion; the fusion increases with increasing m.o.i.. In cells infected with HPF 1 and 2, neither bacterial nor NDV neuraminidase blocked cell fusion, using amounts of neuraminidase that completely block fusion of HPF3 infected cells. However, when inactivated HPF3 was used as a source of viral neuraminidase, the treatment inhibited fusion of cells infected with HPF 1 and 2 as well as 3. The differences found between these viruses in terms of their interaction with the cell, ability to modulate cell–cell fusion and reponse to exogenous neuraminidases of various specificities, may reflect salient differences in biological properties of the three viruses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call