Abstract
This chapter describes the methods of propagation and titration for DENV-1 to -4, which are required for most of the experiments using live viruses. DENV does not reach titers as high as those of other viruses or as high as desired for their use in biological assays. Although DENV grows in many different cell lines derived from both vertebrate and invertebrate cells, the most common cell lines used for virus isolation and propagation are mosquito cells C6/36 from Aedes albopictus. Amongst several methods for virus quantification, plaque assay stands out as being very practical and inexpensive. This technique is carried out essentially to estimate virion density in a particular material, being extremely important when evaluating the effect of an antiviral treatment or antibody neutralization capacity, for example. In this assay, viral particles are serially diluted and added onto confluent cell monolayers immersed in a semisolid medium, which is responsible for limiting virus spread throughout the culture. Therefore, regarding the medium consistency, once a virion successfully infects a cell, the newly produced particles can only infect neighboring cells, eventually leading them to death. This phenomenon can be observed as round gaps or plaques in the culture after staining live cells with a crystal violet solution. Then, plaques are counted and used to determine plaque-forming units per milliliter. Here, we describe a protocol established by our group for dengue virus (DENV) titration with porcine kidney (PS) cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.