Abstract
This paper deals with the micro–macro-derivation of virus models coupled with a reaction–diffusion system that generates the dynamics in space of the virus particles. The first part of the presentation focuses, starting from [N. Bellomo, K. Painter, Y. Tao and M. Winkler, Occurrence versus absence of taxis-driven instabilities in a May–Nowak model for virus infection, SIAM J. Appl. Math. 79 (2019) 1990–2010; N. Bellomo and Y. Tao, Stabilization in a chemotaxis model for virus infection, Discrete Contin. Dyn. Syst. S 13 (2020) 105–117], on a survey and a critical analysis of some phenomenological models known in the literature. The second part shows how a Hilbert type can be developed to derive models at the macro-scale from the underlying description delivered by the kinetic theory of active particles. The third part deals with the derivation of macroscopic models of various virus models coupled with the reaction–diffusion systems. Then, a forward look to research perspectives is proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.