Abstract
An enveloped virus with soft and rough shells has strong penetration ability for cells. Inspired by the unique structure of virus, we successfully constructed virus-mimicking mesoporous organosilica nanocapsules (denoted as VMONs) for the first time by decorating small-sized silica nanoparticles on soft mesoporous organosilica hollow spheres. TEM and SEM images reveal that the prepared VMONs display uniform diameters (240 nm), a soft framework, a rough surface, and excellent dispersity. Quantitative nanomechanical mapping further demonstrates that the VMONs possess an extremely low Young's modulus (36 MPa) and a scraggly surface. In view of the successful construction of the virus-mimicking nanocapsules, the VMONs are further modified with human serum albumin (HSA) and Cy5.5-maleimide (Mal-Cy5.5) to investigate their cell penetration ability. Flow cytometry analysis reveals that the internalization of VMONs@HSA-Cy5.5 increases 2.74-fold compared to that of the conventional mesoporous nanosphere. Confocal laser scanning microscopy images show that the VMONs@HSA-Cy5.5 diffuses deeper for multicellular spheroids compared to both hard and soft mesoporous organosilica nanospheres. The penetration ability of the VMONs and SMONs increases 18.49 and 6.13-fold compared to that of MONs at the depth of 60 μm. Thanks to the excellent cellular penetration ability, the virus-mimicking VMONs@HSA-Cy5.5 can effectively deliver the anticancer drug doxorubicin (Dox) into drug-resistant MCF-7/ADR human breast cancer cells and significantly enhance the chemotherapeutic efficacy. Taken together, the constructed virus-mimicking organosilica nanocapsules with a soft framework and a rough surface possess strong cellular internalization and tumor penetration abilities, providing a unique and effective nanoplatform for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.