Abstract
After the inoculation of Golden Syrian hamsters with the TC-83 vaccine strain of Venezuelan encephalitis (VE) virus, a sustained diminution in glucose-stimulated insulin release and glucose intolerance of shorter duration develops. To understand better the mechanism of this defect in insulin release, we examined insulin secretion in response to several test agents in isolated perifused islets from control and 24-d post-VE virus-infected hamsters. 50 islets were used in all perifusion experiments, and data were expressed as total insulin released as well as peak response for each test agent during a 30-min perifusion period from control and VE-infected islets. After perifusion with 20 mM glucose, a 45% diminution of insulin release was noted in VE-infected islets in comparison with control islets, which in turn was similar to in vivo findings. However, following 1-mM tolbutamide stimulation, insulin release was similar in control and VE-infected islets. In separate studies, 1 mM tolbutamide, 10 mM theophilline, 1 mM dibutyryl cyclic (c)AMP, and 1 mM 8-bromo-cAMP resulted in statistically similar insulin-release curves in control and VE-infected islets. Additional experiments assessing [5-3H]glucose use in control and infected islets after 20 min of perifusion with 20 mM glucose revealed virtually identical values (239 +/- 30-control; and 222 +/- 27-VE-infected islets). Morphological and morphometric evaluation of VE-infected islets (21 d following virus inoculation) showed no changes in islet volume density, beta cell density, and beta cell granulation. Thus, VE virus induces a defect in glucose-stimulated insulin release from hamster beta cells that can be corrected by cAMP analogues and does not alter islet glucose use.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.