Abstract

Viral respiratory tract infections cause significant morbidity and mortality. Respiratory viruses are suspected to play a role in the inception of asthma early in life. Respiratory syncytial virus (RSV) is the most common cause of infant bronchiolitis, which is associated with the development of childhood wheezing and asthma. However, it is not clear whether this association is "causal" or "circumstantial." Animal models have been pivotal in studying the pathophysiology of viral respiratory infections. Various approaches to assessing airway inflammation and function have been used to define the mechanisms of virus-induced airway dysfunction and to address clinically relevant questions regarding the role of RSV in wheezing and asthma after bronchiolitis. Viral lower respiratory tract infections alter airway function in humans and animals. The extent and duration of the alterations may depend on the virus itself, host factors and environmental factors. Animal studies demonstrated that viral infection induces airway hyperresponsiveness and enhances this alteration in the allergen-sensitized and exposed host. This altered airway function is mediated by immune and neurogenic inflammatory mechanisms. Recent studies in mice show that neonatal RSV infection sensitizes the newborn to develop an asthma-like phenotype on reinfection, providing further opportunities to investigate the role of RSV in postbronchiolitis wheezing and asthma in this animal model. Further studies are needed to fully establish the mechanisms underlying the pathophysiology of viral respiratory tract infections and to clarify their role in the inception and/or progression of chronic airway diseases such as asthma. The results of ongoing therapeutic studies promise to minimize the impact of such viral infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.