Abstract

Expression of the E. coli enzyme nitroreductase (NTR) in tumour cells enables them to activate the prodrug CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide), leading to interstrand DNA crosslinking and cell death. Using transfected or retrovirally transduced SKOV3 ovarian carcinoma cell clones, we show a strong correlation between sensitivity to CB1954 and level of NTR enzyme activity. Importantly for clinical application in ovarian cancer, a cisplatin-resistant ovarian tumour cell line remains as susceptible to the NTR-dependent cytotoxicity of CB1954 as parental cells. In mixed populations of NTR-expressing and non-expressing cells, we observe a marked 'bystander killing' effect with this system. The use of NTR-encoding retroviruses from clonal producer cell lines at titres of 5 x 10(5) c.f.u./ml to transduce either established or low passage primary ovarian carcinoma lines only achieves an average 10-fold sensitisation of the cultures at gene transfer efficiencies of 15-25%. Concentration of the retrovirus to 3 x 10(7) c.f.u./ml elevates gene transfer to 80-90% in a single exposure to target cells, resulting in up to 500-fold sensitisation of the entire, unselected SKOV3 population to CB1954. In an initial investigation of NTR/CB1954 for the treatment of tumours in vivo, we observe regression of tumours expressing NTR following administration of CB1954, resulting in significantly increased median survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.