Abstract

It is known that pre-mRNAs in eukaryotic cells can be processed to circular RNAs by a backsplicing mechanism. Circular RNAs have great stability and can sequester proteins or small RNAs to exert functions on cellular pathways. Because viruses often exploit host pathways, we explored whether the RNA genome of the cytoplasmic hepatitis C virus is processed to yield virus-derived circRNAs (vcircRNAs). Computational analyses of RNA-seq experiments predicted that the viral RNA genome is fragmented to generate hundreds of vcircRNAs. More than a dozen of them were experimentally verified by rolling-circle amplification. VcircRNAs that contained the viral internal ribosome entry site were found to be translated into proteins that displayed proviral functions. Furthermore, two highly abundant, nontranslated vcircRNAs were shown to enhance viral RNA abundance. These findings argue that novel vcircRNA molecules modulate viral amplification in cells infected by a cytoplasmic RNA virus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.