Abstract

In a mouse model of systemic infection, the spv genes carried on the Salmonella enterica serovar Typhimurium virulence plasmid increase the replication rate of salmonellae in host cells of the reticuloendothelial system, most likely within macrophages. A nonpolar deletion in the spvB gene greatly decreased virulence but could not be complemented by spvB alone. However, a low-copy-number plasmid expressing spvBC from a constitutive lacUV5 promoter did complement the spvB deletion. By examining a series of spv mutations and cloned spv sequences, we deduced that spvB and spvC could be sufficient to confer plasmid-mediated virulence to S. enterica serovar Typhimurium. The spvBC-bearing plasmid was capable of replacing all of the spv genes, as well as the entire virulence plasmid, of serovar Typhimurium for causing systemic infection in BALB/c mice after subcutaneous, but not oral, inoculation. A point mutation in the spvBC plasmid preventing translation but not transcription of spvC eliminated the ability of the plasmid to confer virulence. Therefore, it appears that both spvB and spvC encode the principal effector factors for Spv- and plasmid-mediated virulence of serovar Typhimurium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call