Abstract

Introduction of the ColV, I-K94 virulence plasmid into strains of Escherichia coli led (for four out of five strains tested) to a marked increase in the ability of organisms to adhere to glass beads. For strain 1829, the plasmid led to increased attachment to other materials including sand, agar, agarose, chitin and cellulose. The increased adhesion to glass beads was due to the presence of the plasmid and not to its introduction into a variant with altered adhesive properties. The plasmid-encoded VmpA protein did not appear to be necessary for the ColV, I-K94-promoted adhesion but adhesion was absolutely dependent on the presence of derepressed levels of transfer components in the ColV+ strains and partially dependent on the presence of colicin components. The extent of the plasmid-promoted adhesion was greatest for organisms grown at 30 degrees, 37 degrees or 42 decrees C and adhesion was almost abolished by growth at 21 degrees or 25 degrees C; this finding is in accord with transfer and colicin components being involved in adhesion. Of several other plasmids tested for their effects on adhesion, those with derepressed transfer properties showed a marked effect as did the RI resistance plasmid. Because of the ease of handling glass bead-attached organisms, such preparations were used as a model for studying the relevance of attachment to the resistance of E. coli to chlorination in the water purification process. Organisms of 1829 ColV, I-K94, attached to glass beads, were more resistant to damage and killing by chlorine than were unattached organisms. Three findings suggest that such chlorine resistance may be significant for survival during water chlorination. Firstly, ColV, I-K94+ bacteria became attached if incubated in sewage effluent with glass beads at 20 degrees C. Secondly, ColV+ organisms already attached to glass beads maintained their attachment during 24 h incubation in effluent at 20 degrees C and thirdly such effluent incubated organisms remained chlorine resistant provided that they retained their attachment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.