Abstract
Persistence of Staphylococcus aureus during invasive infections has been associated with a small-colony variant (SCV) phenotype. SCVs are frequently auxotrophic for menadione or hemin, two compounds involved in the biosynthesis of the electron transport chain. SCVs have been shown to be more resistant to antibiotics such as aminoglycosides, grow slowly and persist intracellularly. The aim of this study was to assess the virulence of an hemB mutant, which has been shown to display the typical characteristics of clinical SCVs, in a murine model of septic arthritis. NMRI mice were inoculated intravenously with either the wild type strain Newman or with its mutant displaying the SCV phenotype. The clinical, bacteriological, and histopathological progression of the disease was studied. Mice inoculated with the hemB mutant displayed a higher frequency and a significantly higher severity of arthritis than mice inoculated with the wild type Newman strain. Despite that, the mutant inoculated mice displayed significantly lower bacterial burden in their kidneys and joints compared with mice exposed to the wild parental strain. Notably, the hemB mutant produced almost 20 times more protease in vitro than the parental strain. We conclude that the small colony variants of S. aureus are more virulent on a per organism basis than its isogenic parental strain in the model of septic arthritis. This can at least in part be explained by the ability of SCV to produce high amounts of destructive proteases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.