Abstract

Virulence mechanisms of avian pathogenic Escherichia coli were investigated by inoculating commercial broiler chickens via the left caudal thoracic air sac with three highly pathogenic and three less pathogenic E. coli isolates. At 6 h postinoculation, all isolates had colonized the respiratory tract (trachea, lungs, and air sacs) and internal organs (liver, spleen, and kidney) of inoculated birds, but bacteria were recovered from pericardial fluid and blood only of birds inoculated with the more pathogenic isolates. F1 fimbriae were expressed on a high proportion of bacteria colonizing the trachea and to a lesser extent on bacteria in the lungs of birds inoculated with each of the isolates. F1 fimbriae were also expressed on bacteria in air sacs only for the less pathogenic isolates. P(F11) fimbriae were expressed on bacteria present in air sacs, lungs, kidney, blood, and pericardial fluid of birds inoculated with one of the more virulent isolates. On electron microscopy, bacteria of the more pathogenic isolates but not of the less pathogenic isolates were observed often associated with or within macrophages, which appeared to be viable, in the air sacs and lungs. In in vitro assays, the more pathogenic but not the less pathogenic isolates, were resistant to opsonization and phagocytosis in the absence of F1 fimbriae, whereas bacteria of all isolates were rapidly killed by avian macrophages when they expressed F1 fimbriae. These results suggest that resistance to phagocytosis may be an important mechanism in avian colisepticemia. They also suggest that F1 fimbrial phase variation to the nonfimbriated phase is favored in the avian lower respiratory tract, is more marked for the more pathogenic isolates, and may be a virulence mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call