Abstract
Most malaria (Plasmodium spp.) parasite species undergo asexual replication synchronously within the red blood cells of their vertebrate host. Rhythmicity in this intraerythrocytic developmental cycle (IDC) enables parasites to maximise exploitation of the host and align transmission activities with the time of day that mosquito vectors blood feed. The IDC is also responsible for the major pathologies associated with malaria, and plasticity in the parasite's rhythm can confer tolerance to antimalarial drugs. Both the severity of infection (virulence) and synchrony of the IDC vary across species and between genotypes of Plasmodium; however, this variation is poorly understood. The theory predicts that virulence and IDC synchrony are negatively correlated, and we tested this hypothesis using two closely related genotypes of the rodent malaria model Plasmodium chabaudi that differ markedly in virulence. We also test the predictions that, in response to perturbations to the timing (phase) of the IDC schedule relative to the phase of host rhythms (misalignment), the virulent parasite genotype recovers the correct phase relationship faster, incurs less fitness losses and so hosts benefit less from misalignment when infected with a virulent genotype. Our predictions are partially supported by results suggesting that the virulent parasite genotype is less synchronous in some circumstances and recovers faster from misalignment. While hosts were less anaemic when infected by misaligned parasites, the extent of this benefit did not depend on parasite virulence. Overall, our results suggest that interventions to perturb the alignment between the IDC schedule, and host rhythms and increase synchrony between parasites within each IDC, could alleviate disease symptoms. However, virulent parasites, which are better at withstanding conventional antimalarial treatment, would also be intrinsically better able to tolerate such interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.