Abstract

The importance of proteases in gene regulation is well documented in both prokaryotic and eukaryotic systems. Here we describe the first example of genetic regulation controlled by the Escherichia coli Clp ATP-dependent serine protease. Virulent mutants of bacteriophage Mu, which carry a particular mutation in their repressor gene (vir mutation), successfully infect Mu lysogens and induce the resident Mu prophage. We show that the mutated repressors have an abnormally short half-life due to an increased susceptibility to Clp-dependent degradation. This susceptibility is communicated to the wild type repressor present in the same cell, which provides the Muvir phages with their trans-dominant phenotype. To our knowledge this is the first case where the instability of a mutant protein is shown to trigger the degradation of its wild type parent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.