Abstract

Pseudomonas aeruginosa is an opportunistic human pathogen that is able to produce several virulence factors such as pyocyanin, rhamnolipids and elastase. In the clinical reference strain PAO1, synthesis of these virulence factors is regulated transcriptionally by quorum sensing (QS) and post-transcriptionally by the Rsm system. Herein, we investigated the role of these systems in the control of the pyocyanin, rhamnolipids and elastase production in the marine strain ID4365. We found that this strain carries a nonsense mutation in lasR that makes it a natural mutant in the Las QS system. However, its QS response is still functional with the Rhl system activating virulence factors synthesis. We found that the Rsm system affects virulence factors production, since overexpression of RsmA reduces pyocyanin production whereas RsmY overexpression increases its synthesis. Unexpectedly, and in contrast to the type strain PAO1, inactivation of rsmA increases pyocyanin but reduces elastase and rhamnolipids production by a reduction of RhlR levels. Thus, QS and Rsm systems are involved in regulating virulence factors production, but this regulation is different to the PAO1 strain even though their genomes are highly conserved. It is likely that these differences are related to the different ecological niches in which these strains lived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call