Abstract

Enterohepatic species of the genus Helicobacter (EHH) are emerging pathogens that have been associated with gastrointestinal and hepatobiliary diseases in humans. However, studies on their pathogenicity are scarce. Galleria mellonella is a recently proposed model for the study of virulence in different pathogens, such as Campylobacter spp. and Helicobacter pylori. Despite this, its usefulness in EHH has not yet been evaluated. Therefore, we determined the pathogenic potential of different EHH species isolated from dogs in this infection model. Four species of EHH (H. bilis, H. canicola, H. canis, and 'H. winghamensis') isolated from fecal samples from domestic dogs were evaluated. Three strains of each species were inoculated in cohorts of G. mellonella at a concentration of 1×107 CFU/mL. Survival curves were determined by the Kaplan-Meier method. In addition, the quantification of melanin, bacterial load in hemolymph, and histopathology were evaluated daily post-infection (pi). G. mellonella larvae are susceptible to EHH infection, exhibiting intra- and inter-species variability. Melanin production became evident from 4h pi and increased throughout the assay. All species were recovered from the hemolymph after 20min pi; however, only H. canis could be recovered up to 48h pi. Histopathology revealed cellular and humoral immune response, evidencing accumulation of hemocytes, nodulation, and melanin deposition in different tissues. EHH species carried by dogs have considerable pathogenic potential, being H. canicola the species with the highest degree of virulence. Thus, G. mellonella is a useful model to assess virulence in these emerging pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.