Abstract

The Varroa mite, Varroa destructor, is recognized as the most serious pest of both managed and feral Western honey bee (Apis mellifera) in the world. The mite has developed resistance to fluvalinate, an acaricide used to control it in beehives, and fluvalinate residues have been found in the beeswax, necessitating an urgent need to find alternative control measures to suppress this pest. Accordingly, we investigated the possibility of using the fungus, Hirsutella thompsonii, as a biocontrol agent of the Varroa mite. Among the 9 isolates of H. thompsonii obtained from the University of Florida and the USDA, only the 3 USDA isolates (ARSEF 257, 1947 and 3323) were infectious to the Varroa mite in laboratory tests. The mite became infected when it was allowed to walk on a sporulating H. thompsonii culture for 5 min. Scanning electron micrographs revealed that the membranous arolium of the mite leg sucker is the focus of infection where the fungal conidia adhered and germinated. The infected mites died from mycosis, with the lethal times to kill 50% (LT(50)s) dependent on the fungal isolates. Thus, the LT(50)s were 52.7, 77.2, and 96.7h for isolates 3323, 257, and 1947, respectively. Passage of H. thompsonii through Varroa mite three times significantly reduced the LT(50)s of isolates 257 and 1947 (P<0.05) but not the LT(50) of isolate 3323. The fungus did not infect the honey bee in larval, prepupal, pupal, and adult stages under our laboratory rearing conditions. Our encouraging results suggest that some isolates of H. thompsonii have the potential to be developed as a biocontrol agent for V. destructor. However, fungal infectivity against the mites under beehive conditions needs to be studied before any conclusion can be made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call