Abstract
Online 3D games require fast and efficient user interaction support over the network environments, and the networking support is usually implemented by the use of a network game engine. The network game engine should minimize the network delay and mitigate the network traffic congestion. To minimize the network traffic between game users, a client-based prediction (dead reckoning (DR) algorithm) is used. Each game entity uses the algorithm to estimate its own movement as well as the others’. In case the estimation error exceeds the threshold, the entity sends an UPDATE packet which includes velocity, position and the like to other entities. As the estimation accuracy is increased, each entity can minimize the transmission of the UPDATE packet. In this paper, a Kalman filter-based approach is proposed in order to improve the prediction accuracy and an adaptive Kalman gain control in order to minimize the number of UPDATE packets to distant devices. The BZFlag game was used in the experiment in order to verify the proposed approach and the results have shown that it is possible to increase prediction accuracy and reduce the network traffic by 12%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Software Engineering and Knowledge Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.