Abstract

We describe a class $\mathcal{C}$ of punctured torus bundles such that, for each $M \in \mathcal{C}$, all but finitely many Dehn fillings on $M$ are virtually Haken. We show that $\mathcal{C}$ contains infinitely many commensurability classes, and we give evidence that $\mathcal{C}$ includes representatives of ``most'' commensurability classes of punctured torus bundles. In particular, we define an integer-valued complexity function on monodromies $f$ (essentially the length of the LR-factorization of $f_*$ in $PSL_2(\mathbb{Z})$), and use a computer to show that if the monodromy of $M$ has complexity at most 5, then $M$ is finitely covered by an element of $\mathcal{C}$. If the monodromy has complexity at most 12, then, with at most 36 exceptions, $M$ is finitely covered by an element of $\mathcal{C}$. We also give a method for computing ``algebraic boundary slopes'' in certain finite covers of punctured torus bundles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.