Abstract
This paper studies the virtual $\chi_{-y}$-genera of Grothendieck's Quot schemes on surfaces, thus refining the calculations of the virtual Euler characteristics by Oprea-Pandharipande. We first prove a structural result expressing the equivariant virtual $\chi_{-y}$-genera of Quot schemes universally in terms of the Seiberg-Witten invariants. The formula is simpler for curve classes of Seiberg-Witten length $N$, which are defined in the paper. By way of application, we give complete answers in the following cases: (i) arbitrary surfaces for the zero curve class, (ii) relatively minimal elliptic surfaces for rational multiples of the fiber class, (iii) minimal surfaces of general type with $p_g>0$ for any curve classes. Furthermore, a blow up formula is obtained for curve classes of Seiberg-Witten length $N$. As a result of these calculations, we prove that the generating series of the virtual $\chi_{-y}$-genera are given by rational functions for all surfaces with $p_g>0$, addressing a conjecture of Oprea-Pandharipande. In addition, we study the reduced $\chi_{-y}$-genera for $K3$ surfaces and primitive curve classes with connections to the Kawai-Yoshioka formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.