Abstract

A virtual wave gauge (VWG) technique based on stereo imaging is developed to remotely measure water wave height, period, and direction. VWG minimizes computational costs by directly tracking the elevation of the water surface at selected points of interest using a Eulerian based dynamic searching algorithm. Results show that the VWG technique developed in this paper dramatically improves efficiency by two orders of magnitude compared to the traditional Lagrangian–Eulerian based point cloud method of stereo image processing. VWG is tested against traditional wave wire gauges to within 98% accuracy for significant wave height. Furthermore, the flexibility of the VWG is demonstrated in two field applications. First in an offshore breaking wave case, an array of VWGs is used to efficiently measure wave directionality. Second to investigate the reflection coefficient of a rock-mounted structure interacting with nearshore waves, linear and spatial VWG arrays are designed and implemented based on a priori information of the wave field from a preliminary VWG measurement. Overall, we demonstrate that the flexible and computational efficient VWG technique has the potential to make real-time remote stereo imaging wave measurements a reality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call