Abstract

This study report documents the development of a finite element (FE) model for analyzing trauma in pregnant women involved in road accidents and help the design of a specific safety device. The model is representative of a 50th percentile pregnant woman at 26 weeks of pregnancy in sitting position. To achieve this, the HUMOS 2 model, which has been validated in a wide range of dynamic tests, was scaled to the morphology of a woman in the 50th percentile and coupled with a model of gravid uterus. During scaling, special attention was paid to the pelvic region which is known to differ considerably in morphological terms between men and women. The gravid uterus model includes a placenta, a fetus, uterosacral ligaments and the amniotic fluid by means of fluid structure interaction formulation. The uterus and the female model were coupled using an original method whereby the growth of an uterus was simulated to compress the abdominal organs in a realistic manner. The model was validated based on experimental tests described in the literature. Additional tests based on abdominal loadings with a seatbelt on Post Mortem Human Surrogates (PMHS) coupled to silicone uterus were also performed.Results highlighted the role of the possible interaction of the fetus in the pregnant woman abdominal response. Experimental corridors taking into account the presence of this fetus could therefore be proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call