Abstract
This study introduces a new version of a virtual tetrahedral gap element to connect partitioned structures which are independently discretized with tetrahedral elements. Tetrahedral meshes are widely used for practical engineering problems due to their simplicity. The proposed interface method employs the localized Lagrange multiplier method. The virtual tetrahedral gap elements are placed between the frame-slave and frame-master interfaces. The surface of the tetrahedral meshes is triangular; thus, a virtual tetrahedral gap element is developed. A distinct feature of the virtual tetrahedral gap element is that it has a zero-strain condition which provides the exact interface reaction forces at the non-matched interface. The proposed tetrahedral gap element handles three-dimensional interface problems more effectively than conventional segment-to-segment methods. It also provides better accuracy. The validity and robustness of the proposed method are demonstrated by several numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.