Abstract

This work presents the current state of the virtual testing activities performed within the Virtual Product House (VPH) start-up project. In this project a multidisciplinary, collaborative end-to-end process for virtual product design is developed. On the basis of preliminary design and concept studies on aircraft level, the process focusses on design, manufacturing and testing of aircraft systems and structural components with special attention to certification aspects. The initial use case considers the trailing edge flap of a long-range aircraft and its actuation system. Design and analysis tools are integrated in a remote workflow execution environment to automatically generate designs and evaluate them by virtual test means. Virtual tests facilitate knowledge on properties and behavior of the virtual product in early development phases and allow to optimize design flaws in consecutive design iterations to hence reduce the risk of costly corrections later in the development process. The testing is setup in multiple stages. Currently, domain-specific tests are carried out for the moveable structure and its actuation system, with the latter being in focus for the current text. These tests address the functional verification of the actuation system in nominal and failure cases. A SysML model comprising system requirements and architecture is used to model test cases and trace test results. On the basis of these test cases, simulation configurations for virtual tests are automatically built, executed and evaluated. With this method, a continuous evaluation of designs in terms of functional verification of the moveable actuation system is possible. Moreover, the automated execution of all steps allows to determine the effects of design changes quickly without a large amount of labor-intensive and error-prone work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.