Abstract

Objective: The Virtual Tape Measure for the Operating Microscope (VTMOM) was created to assist surgeons in making accurate 3D measurements of anatomical structures seen in the surgical field under the operating microscope. The VTMOM employs augmented reality techniques by combining stereoscopic video images with stereoscopic computer graphics, and functions by reiving on an operator's ability to align a 3D graphic pointer, which serves as the end-point of the virtual tape measure, with designated locations on the anatomical structure being measured. The VTMOM was evaluated for its baseline and application performances as well as its application efficacy.Methods: Baseline performance was determined by measuring the mean error (bias) and standard deviation of error (imprecision) in measurements of non-anatomical objects. Application performance was determined by comparing the error in measuring the dimensions of aneurysm models with and without the VTMOM. Application efficacy was determined by comparing the error in selecting the appropriate aneurysm clip size with and without the VTMOM.Results: Baseline performance indicated a bias of 0.3 mm and an imprecision of 0.6 mm. Application bias was 3.8 mm and imprecision was 2.8 mm for aneurysm diameter. The VTMOM did not improve aneurysm clip size selection accuracy.Discussion and Conclusion: The VTMOM is a potentially accurate tool for use under the operating microscope. However, its performance when measuring anatomical objects is highly dependent on complex visual features of the object surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call