Abstract

The concept of Virtual Synchronous Machines (VSM) is emerging as an alternative approach for control of power electronic converters operating in the power system. One main motivation for applying VSM-based control is to achieve a simple approach for emulating the inertia effect of traditional synchronous machines. This paper provides a comprehensive literature review on VSM and a possible classification of the different schemes. In addition, the small-signal response of the inertia emulation characteristics of VSM-based control is proved to be equivalent to conventional droop-based control for standalone and microgrid operation of converters. Thus, the droop gain and the filter time constant of the power feedback in a droop controller can be directly related to the damping factor and the inertia constant of a Virtual Synchronous Machine. The derived results are providing additional physics-based insight into the operation and tuning of both types of controllers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call