Abstract

The oceanic positioning, navigation and timing (PNT) network requires high-quality underwater acoustic message transmission. Turbo equalization technology has exhibited superior performance for underwater acoustic (UWA) communications compared with conventional channel equalizers. To overcome the performance reduction caused by severe doubly selective UWA channels, the virtual space-time diversity soft direct-adaptation turbo equalization is proposed for UWA communications. The proposed scheme improves the ability of the typical turbo equalizer to deal with both Doppler and multipath effects for time varying channels. We utilize a fractionally spaced soft interference cancellation equalizer (FS-SE) instead of a hard decision to constitute the soft-input soft-output (SISO) equalizer. Combined with another virtual time-reversal mirror equalizer component, we can obtain virtual space and time diversity with only a single receiving transducer and mitigate the error propagation phenomenon of the feedback filter. To satisfy the sparse UWA channel, the ℓp,q-PRLS algorithm is applied to adaptive updates for FS-SE. In the proposed scheme, an adjustable interpolator and digital phase-locked loop are embedded into the equalizer to overcome the residual Doppler frequency shift and recover the timing distortion. Results of simulations and field lake trial show that the proposed scheme achieves better performance than existing ones under the same equalizer order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call