Abstract

Neural network approaches have commonly been used to solve complex mathematical equations in the literature. They have inspired the modifications of state controllers and are often implemented for electrical drives with an elastic connection. Given that the addition of a virtual signal can provide adaptive properties to classical controllers and that selected feedback signals can also be replaced with a virtual state variable from a neural network, several combinations can be considered and compared. In this paper, Radial Basis Function neural-network-based control algorithms are proposed in which online updating of the output weights is used. Analyses of simulation experiment results reveal that the proposed control algorithms significantly improve the operation of classic-state feedback controllers applied to two-mass systems in the presence of parameter uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.