Abstract

A novel method of virtual shearing interferometry (VSI) is proposed. In this method, the shearogram is obtained by interference of a real object wave-front and a virtual object wave-front. The former is optically recorded and then digitally reconstructed; and the latter is introduced digitally by repositioning or reforming the former. The obvious advantages of VSI over conventional shearing interferometry (SI) are its versatility, accuracy, and simplicity. Only one real field is necessary to produce shearogram; there is no need of any real shearing device or even the phase unwrapping computation; and the digital shear can take any possible form according to different purposes. Both the optical experiments and computer simulations with lateral shearing, 180° rotational shearing and double lateral shearing for evaluation of lens aberrations in the general case including spherical aberration, coma, astigmatism, defocus, and tilts based on phase-shifting interferometry are given to verify the effectiveness of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call